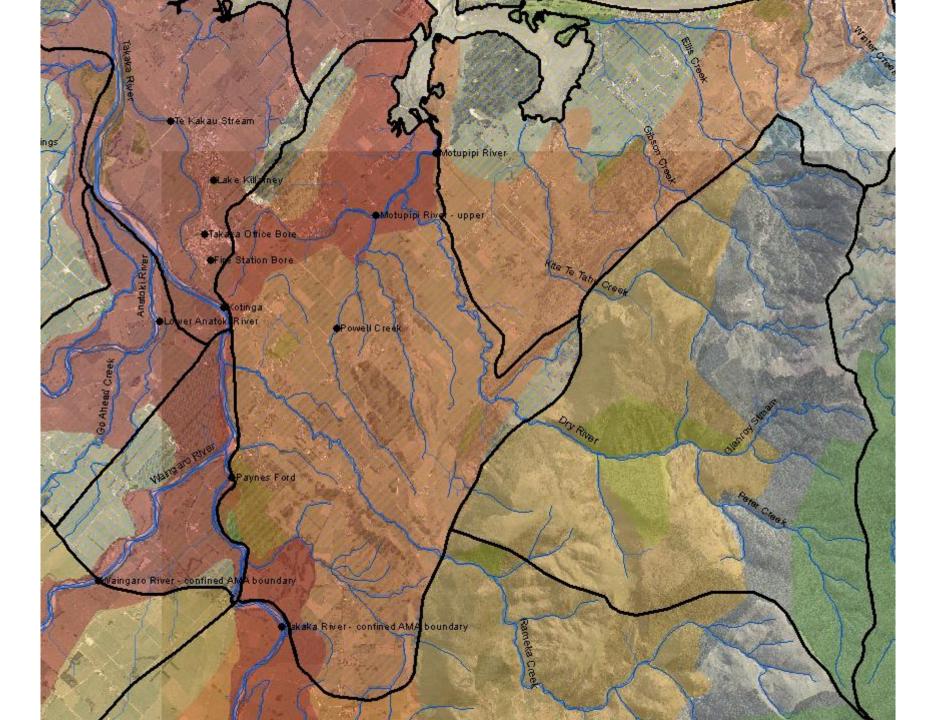
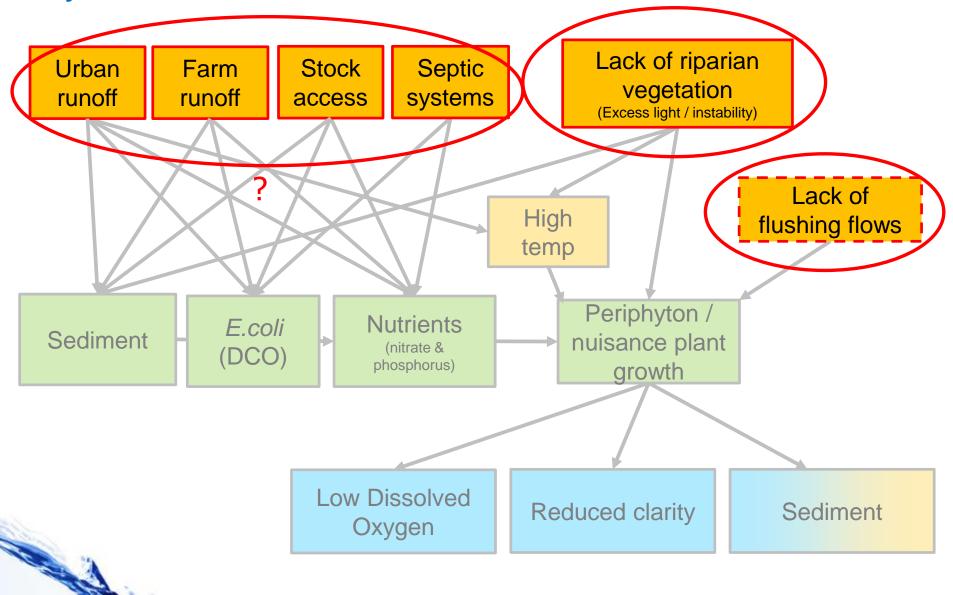

Motupipi – issues and management options


Lisa McGlinchey and Trevor James 19 February 2016

Zone overview

- Four main waterbodies
 - Motupipi River and tributaries (including part of Dry Creek)
 - Lower part of the Rameka Creek
 - Takaka Gravel Aquifer
 - Takaka Karst Aquifer


Summary of Water Quality Issues

- Motupipi River (refer meeting 2)
 - Nutrients (nitrate/phosphorus) (nitrate regularly over trigger)
 - Disease causing organisms (E.coli regularly over guidelines)
 - Riparian habitat loss
 - causing temperature issues on tributaries
 - causing excess light
 - impacts on biodiversity, aquatic habitat / ecological values
 - Nuisance plant growth (aquatic weed & algal blooms)
 - causing dissolved oxygen issues, potential to reduce clarity
 - exacerbated by lack of flushing flows, excess light, high temps and elevated nutrients
 - Sediment
 - exacerbated by lack of flushing flows, willows & aquatic weed
- Aquifers
 - Elevated nitrate in Takaka Karst Aquifer

Summary of Water Quality Issues

- Motupipi River (refer meeting 2)
 - Nutrients (nitrate/phosphorus) (nitrate regularly over trigger)
 - Disease causing organisms (*E.coli* regularly over guidelines)
 - Riparian habitat loss
 - causing temperature issues on tributaries
 - causing excess light
 - impacts on biodiversity, aquatic habitat / ecological values
 - Nuisance plant growth (aquatic weed & algal blooms)
 - causing dissolved oxygen issues, potential to reduce clarity
 - exacerbated by lack of flushing flows, excess light, high temps and elevated nutrients
 - Sediment
 - exacerbated by lack of flushing flows, willows & aquatic weed
- Aquifers
 - Elevated nitrate karst aquifer

Key attribute drivers

Nutrients and Disease Causing Organisms

- Isotope analysis: likely to be coming from effluent and fertiliser
- Sources could be farm/stock and onsite WW systems
- Nitrates not a toxicity issue, exacerbating nuisance plant growth

- Faecal source tracking may indicate source types
- Education and WOF for onsite wastewater systems (89)
- Urban CMP project to identify urban runoff issues
- Good/best land use practice (need to define)
- Ongoing nitrate/phosphorus and E.coli monitoring
 - TDC going to monthly monitoring in Motupipi

Sediment

- From: land disturbance and land use runoff, river bank erosion and urban discharges
- Uncertain of relative generation from different sources
- Exacerbated by willows and aquatic weed

- Good/best land use practice with focus on land disturbance and sediment control practices
- Stock exclusion from river banks
- Riparian planting to stabilize and shade stream banks
- Urban CMP project to identify urban runoff issues
- River bed restoration (sediment build-up removal)
- Ongoing estuary and stream sediment monitoring

Lack of riparian vegetation

- Historic losses and ongoing from stock grazing
- Causing high temperatures, exacerbating nuisance plant effects
- Causing habitat degradation and loss of:
 - Shading and cooling temperatures (microclimate effects)
 - Resilience of aquatic ecology during low flows
 - Food provision from leaf and insect fall
 - Habitat provision from woody material and root exposure

- Replanting
 - Requires intensive management during establishment phase
 - Requires ongoing plant pest management
 - Time lag before sufficient canopy growth occurs to get full benefits
- Fencing to control stock access to replanted areas
- Replanting and fencing has already been done on some properties
 - Fencing all but spring sources and some upper parts, ~10-20% planted

Lack of flushing flows

- Partly spring fed system with tributaries that dry up
- Exacerbated by Takaka River bed degradation (~0.5-1m) and flood management actions since 1983
- Exacerbating nuisance plant growth

- Potentially difficult/expensive to improve flushing however potential for investigation of options via CMP project
- Focus on preventing nuisance plant growth through stream shading and nutrient reduction

Great shape – just need to add trees

Questions for FLAG

Have we missed any key issues?
Have we missed any management options?

Are there any management options you have concerns about?

Motupipi - Methods of Implementation Overview

Lisa McGlinchey 19 February 2016

Methods of Implementation - overview

- Council (Plan framework and Implementation Plan)
 - Investigations and Monitoring
 - Education and Advocacy
 - Works and Services
 - Financial incentives
 - Regulatory
- Community/landowner driven/funded special projects
 - External funding sources and support
 - Local community networks
 - Council advice/support
- Industry/landowner driven/funded change
 - Market drivers
 - Council advice/support

Implementation – Investigations and monitoring

Sampling or investigation projects:

- Source sampling faecals, sediment?
- WOF programme for onsite wastewater systems (89)
- Urban CMP project
 - to identify urban runoff issues
 - to investigate flushing options

• Ongoing monitoring (ie SOE programme):

- Nitrate and Phosphorus
- Disease causing organisms
- Estuary and river sediment monitoring
- etc

Implementation – Education and Advocacy

- Education and advocacy (council & industry bodies):
 - Onsite wastewater systems management for owners *
 - Erosion and sediment control good practice *
 - Industry specific good and best land use practice *
 - Replanting and management of water bodies *

Implementation – Special projects

Landowner/community:

- Bed restoration sediment build-up removal
- Replanting of stream banks* initial focus on shade
- Fencing of stream banks*
- Willow control

Implementation – Financial incentives

• Council:

- Sediment build-up removal
- Replanting of stream banks initial focus on shade (TDC 50% subsidy of \$230k /year)
- Fencing of stream banks (TDC budget ~20km/year)
- Willow control

Implementation – Regulatory (policy & rules)

- Review of existing land disturbance rules (in progress)
- Addition of new policy/rules content for:
 - Minimum flow and allocation regimes
 - Rationing and cease take provisions
- Which land use aspects should be regulated to achieve water quality outcomes?
 - Good practice requirements (define)
 - 'back stop or bottom line' rules/limits?
- Waimea FLAG looking at use of Industry Audited Self-Management systems in rule cascades – eg NZGAP
 - Avoid duplication costs for landowners
 - Avoid excessive compliance costs for council

Implementation – good / best land use practice

• Landowners:

- Fertiliser and irrigation management
- Silage, composting and offal pit location and management
- Cultivation, cropping, harvest and feed management
- Replanting of riparian vegetation
- Stock exclusion from waterbodies, banks and sinkholes
- Use of constructed wetlands at farm drainage points
- Erosion and sediment control practices
- □ etc

• Industry bodies:

- Landowner education, incentives and support
- Industry audit of self-management systems (IASM)

• Council:

- Review of existing land disturbance rules
- Landowner education, incentives and support
- Audit of IASM programmes

Summary 20km/yr 50% subsidy education Rules? **CMP** fencing education Rules? Lack of riparian Urban Farm Stock Septic vegetation runoff runoff systems access (Excess light / instability) education G&BP / IASM Rules? WOF Rules? **CMP** Lack of Source tracking, ongoing monitoring High flushing flows temp Periphyton / **Nutrients** E.coli Sediment nuisance plant (nitrate & (DCO) phosphorus) growth ongoing monitoring Low Dissolved Reduced clarity Sediment Oxygen

Questions / comments?

Questions to consider next...

Which management options do we pursue? Can we afford them?

How do we promote and incentivise landowners?

What gets regulated?

What should council pay for?

